Strangeness Report Federico Antinori INFN Padova - Italy #### Contents - → I concentrate on strange particle abundances (yields and ratios) - QGP predictions - Enhancement pattern - Hadronic transport - Thermal models - Beyond equilibrium? - The Φ - Extras - Conclusions not covered: Resonances (Fachini), Spectra (Velkovska), Flow (Retiere), Pentaguarks (Jaffe), HBT (Magestro) ## Two historic QGP predictions - \bullet restoration of χ symmetry \rightarrow increased production of s - mass of strange quark in QGP expected to go back to current value - m_s ~ 150 MeV ~ Tc - → copious production of s̄s pairs, mostly by gg fusion [Rafelski: Phys. Rep. 88 (1982) 331] [Rafelski-Müller: P. R. Lett. 48 (1982) 1066] - deconfinement → stronger effect for multi-strange - can be built using uncorrelated s quarks produced in independent microscopic reactions - strangeness enhancement increasing with strangeness content [Koch, Müller & Rafelski: Phys. Rep. 142 (1986) 167] • @ top SPS (NA57, $\int s_{NN} = 17.3 \, GeV$) and (yesterday's news) @ RHIC (STAR, \(\sigma_{\text{NN}} = 200 \text{ GeV} \) and (yesterday's news) @ low E SPS (NA57, \(\sum_{NN} = 8.8 \) GeV) qualitatively similar picture emerging from 8.8 to 200 GeV #### Alternative definition of pA enhancement? - e.g.: [Fischer: Nucl. Phys. A 715 (2003) 118] - two-component model of particle production: ⇒ in pA: $$Y_{pA} = [v/2 + 1/2] Y_{pp}$$ (v = number of collisions) = $N_{part} Y_{pp}/2$ enhancement "blamed" on projectile component only: usual enhancement: E alternative enhancement: F $$(Y/N_{part})_{pA} = E \cdot (Y/N_{part})_{pp}$$ $\rightarrow Y_{pA} = E [v/2 + 1/2] Y_{pp}$ $$Y_{pA} = [v/2 + F/2] Y_{pp}$$ • then: $(F - 1) = (E - 1) N_{part}$ reasonable for baryon number transfer, but do e.g. strange quarks know if they come from projectile or target? \rightarrow enhancement within pA appears even if pA yields \propto N_{part} #### Hadronic transport - Hadronic transport codes: - do reasonably well on singly strange particles - but fail to reproduce the production of multi-strange particles at SPS and RHIC - see for instance: - [Soff et al.: Phys. Lett. B471 (1999) 89], - [C.Greiner: nucl-th/0208080 and references there], - [STAR: nucl-ex/0307024], - [Huovinen & Kapusta: nucl-th/0310051] [Huovinen & Kapusta: nucl-th/0310051] ## Hadronic transport Hadronic transport codes: do reasonably well on singly strange particles but fail to reproduce the production of multi-strange particles at e], rium value as a function of the local temperature. The upper set of curves start with the baryons in equilibrium at T_c , the lower set start with no baryons. [Huovinen & Kapusta: nucl-th/0310051] #### Hadronic transport - Hadronic transport codes: - do reasonably well on singly strange particles but fail to reproduce the production of multi-strange particles at SPS and RHIC - see for instance: - [Soff et al.: Phys. Lett. B471 (1999) 89], - [C.Greiner: nucl-th/0208080 and references there], - [STAR: nucl-ex/0307024], - [Huovinen & Kapusta: nucl-th/0310051] - they get closer if: - masses are reduced towards chiral values or string tension is enhanced with respect to ee/pp/pA - enhanced contribution from inelastic scattering during expansion - Activity is still ongoing: - e.g.: [Capella: nucl-th/0303045; Subrata Pal et al.: nucl-th/0106074] - hadronic models are getting more and more exotic... #### Meanwhile at the AGS... - Nice new measurement: <u>= production close to threshold</u>, Au-Au @ 6 A GeV (E895) [P.Chung et al.: nucl-ex/0302021] - At this energy RQMD works fine! #### Thermal fits Thermal fits don't do too bad! e.g.: brand new @ RHIC 200 - $T_{ch} = 160 \pm 10 \text{ MeV}$ - \bullet $\mu_B = 24 \pm 5 \text{ MeV}$ (STAR Preliminary) relative particle abundances ~ as expected at thermodynamical equilibrium for grand-canonical system, even for rare, multi-strange particles #### T systematics - it looks like Hagedorn was right! - if the resonance mass spectrum grows exponentially (and this seems to be the case), there is a maximum possible temperature for a system of hadrons - indeed, we don't seem to be able to get a system of hadrons with a temperature beyond T_{max} ~ 170 MeV! #### T vs μ_{B} systematics the extracted freeze-out points at SPS and RHIC lay very close to the predicted QGP phase boundary #### Canonical vs Grand Canonical - Energy penalty to create a strange particle: - <u>Canonical</u>: computed taking into account also energy to create companion to ensure conservation of strangeness - Grand Canonical limit: just due to creation of particle itself. The rest of the system acts as a reservoir and "picks up the slack" - removal of canonical suppression - increases with strangeness - ~ observed enhancements - detailed centrality dependence not reproduced (very crude modelling) [Hamieh et al.: Phys. Lett. B486 (2000) 61] #### • @ RHIC: #### • @ RHIC: - decrease of enhancements from SPS predicted - order of magnitude of enhancements close - again, model for V_{corr} vs N_{part} seems to be inadequate # Does this *explain* the observed enhancement pattern? - a system <u>in eq.</u>, if it is large enough, is in GC eq., but being large in itself is not a sufficient condition for being GC! - if AA colls. were just a superposition of pp, they would have to be treated canonically all the same! - the system must also know it is large... - it must know that an Ω^+ generated here can be compensated by, say, an Ω^- on the other side of the fireball! - what counts is the correlation volume - "Canonical Suppression is removed!" - an observation, not an explanation # How is Canonical Suppression removed? how does the system know it is large? how can information travel so quickly through the system? - → not by conventional hadronic transport (no time!) - natural if the system is coming back from deconfinement ## How is Canonical Suppression removed? - how does the system know it is large? how can information travel so quickly through the system? - → not by conventional hadronic transport (no time!) - natural if the system is coming back from deconfinement - two recent ideas: - quantum coherence in the fireball [Stock: hep-ph/0312039] - can it be developed into testable model? - what about pA? - multi-particle interactions [Braun-Munzinger et al.: nucl-th/0311005] - only important close to phase boundary - if true, we are actually *measuring* Tc - microscopic mechanism to restore abundances to hadronic eq. ### An equilibrium pre-diction - mid-rapidity multi-strange/∧ @ 40 GeV SPS - NA57 vs [Becattini: private communication] - $\gamma_s = 1$, T from 4π fit to NA49 40 GeV [Becattini et al.: hep-ph/0310049] • using π^{\pm} , K^{\pm} , φ , Λ and $\overline{\Lambda}$ - Λ and Λ dN/dy from NA57 fix μ_B and normalization - Prediction of $\Xi^- \Xi^+ \Omega^-$ and $\Omega^+ dN/dy$ - total χ^2 /dof = 1.4 against values measured by NA57 - → No parameter for multi-strange again, not bad... # #### **\Lambda(1520)** Λ(1520) deviates from sistematics (~ 1/2) e.g.: [Markert: J. Phys. G 28 (2002) 1753] → we look for in-medium effects we take fits very seriously! Fit to NA49 data [Becattini et al.: hep-ph/0310049] #### Resonances @ RHIC new: Λ(1520), K*(892), Δ(1232) in STAR at 200 GeV - resonances show larger deviations from statistical fit - rescattering vs regeneration? - see talk by P. Fachini ## Non equilibrium: γ_s - ullet 4π yield ratios sometimes preferred for thermal fits - to be safe in case strangeness ends up too far away in rapidity from where originally produced - (but can one assume global equilibrium with same T and same μ_B at different rapidities?) - in this case $\gamma_s \sim 0.7$ 0.8 must be introduced - strangeness undersaturation factor: - for each particle, a factor $\gamma_s^{N(s+\overline{s})}$ - e.g.: [Becattini et al.: hep-ph/0310049] - could it also mimic residual canonical suppression? # Non equilibrium: Ys & Yq see e.g.: [Rafelski & Letessier: hep-ph/0309030] - γ_q controls overall abundance of $q\bar{q}$ - old γ_s becomes γ_s/γ_q - w.r.t. previous, additional factor γ_q^B for baryons - fits get beautiful e.g.: @ RHIC → [see also Becattini et al.: hep-ph/0310049] (but additional parameter) - @ RHIC 130: $$\gamma_q = 1.6 \pm 0.2$$ $\gamma_s / \gamma_q = 1.3 \pm 0.1$ strangeness actually enhanced above hadronic equilibrium values? | ratio | RHIC-130 | non-eq fit | χ^2 | | | | |---|-----------------------|---------------|----------|--|--|--| | π^+/p | 9.5 ± 1.4 | 9.07 | 1.15 | | | | | π^-/p | 13.4 ± 0.9 | 13.15 | 0.08 | | | | | p/h^- | _ | 0.0459 | - | | | | | Λ_c/h^- | 0.059 ± 0.004 | 0.0509 | 4.11 | | | | | Λ_c/h^- | 0.042 ± 0.004 | 0.0379 | 1.04 | | | | | Ξ_c^-/h^- | 0.0079 ± 0.0012 | 0.00805 | 0.01 | | | | | $\overline{\Xi_c^-}/h^-$ | 0.0066 ± 0.001 | 0.00645 | 0.02 | | | | | Ω/h^- | $(12 \pm 5)10^{-4}$ | 13.210^{-4} | 0.06 | | | | | $(\overline{\Omega} + \Omega)/h^-$ | $(22 \pm 6.5)10^{-4}$ | 24.810^{-4} | 0.19 | | | | | Λ_c/p | 0.90 ± 0.12 | 0.747 | 1.63 | | | | | $\overline{\Lambda_c}/\overline{p}$ | 0.93 ± 0.19 | 0.826 | 0.30 | | | | | Ξ^{-}/Λ | 0.193 ± 0.03 | 0.189 | 0.02 | | | | | $\overline{\Xi^-}/\overline{\Lambda}$ | 0.219 ± 0.035 | 0.207 | 0.12 | | | | | Ω/Ξ^- | _ | 0.164 | _ | | | | | $\overline{\Omega}/\overline{\Xi^{-}}$ | _ | 0.180 | _ | | | | | $(\overline{\Omega} + \Omega)/(\overline{\Xi} + \Xi)$ | 0.150 ± 0.04 | 0.171 | 0.28 | | | | | \overline{p}/p | 0.71 ± 0.06 | 0.674 | 0.36 | | | | | Λ_c/Λ_c | 0.71 ± 0.04 | 0.745 | 0.78 | | | | | ₹/≘ | 0.83 ± 0.08 | 0.801 | 0.13 | | | | | $\overline{\Omega}/\Omega$ | 0.95 ± 0.1 | 0.878 | 0.51 | | | | | \dot{K}^{+}/π^{+} | 0.17 ± 0.02 | 0.195 | 1.59 | | | | | K^-/π^- | 0.15 ± 0.02 | 0.180 | 2.28 | | | | | K^-/K^+ | 0.87 ± 0.07 | 0.923 | 0.57 | | | | | K^{*0}/K^{-} | 0.26 ± 0.08 | 0.231 | 0.13 | | | | | ϕ/h^{-} | 0.02 ± 0.002 | 0.0212 | 0.37 | | | | | ϕ/K^- | 0.15 ± 0.03 | 0.148 | 0.00 | | | | | ϕ/K^{*0} | 0.595 ± 0.24 | 0.639 | 0.03 | | | | | | | | | | | | | $\sqrt{s_{NN}}$ [GeV] | 200 | 130 | 200 | 130 | |--------------------------|-------------------|-----------------|---------------|----------------| | T [MeV] | 143 ± 7 | 144 ± 3 | 160 ± 8 | 160 ± 4 | | $\mu_b [{ m MeV}]$ | 21.5 ± 31 | 29.2 ± 4.5 | 24.5 ± 3 | 31.4 ± 4.5 | | $\mu_s [{ m MeV}]$ | 2.5 ± 0.2 | 3.1 ± 0.2 | 2.9 ± 0.2 | 3.6 ± 0.2 | | $\mu_{ m S} [{ m MeV}]$ | 4.7 ± 0.4 | 6.6 ± 0.4 | 5.3 ± 0.4 | 6.9 ± 0.4 | | γ_q | $1.6 \pm 0.3^{*}$ | $1.6 \pm 0.2^*$ | 1* | 1* | | γ_s/γ_q | 1.2 ± 0.15 | 1.3 ± 0.1 | 1.0 ± 0.1 | 1.13 ± 0.06 | | χ^2/dof | 2.9/6 | 15.8/24 | 4.5/7 | 32.2/25 | | $P_{ m true}$ | 90%+ | 95%+ | 65% | 15% | - pentaquark production (if statistical) would be particularly sensitive to need for $\gamma_q!$ - additional γ_q^2 factor for Θ^+ w.r.t. other models e.g.: [Letessier et al.: hep-ph/0310188, Becattini et al.: hep-ph/0310049] ## Hyperon enhancements at 40 GeV - enhancements vs N_{wound} steeper at 40 than at 160 - C to GC predicts a factor 4 5 larger Ξ⁻ enhancement at 40 GeV than at 160, not seen in the data [Bruno (NA57): yesterday] [Tounsi & Redlich: hep-ph/0111159] - perhaps yields trying to shoot up but don't go all the way? - on the other hand, equilibrium fit not too bad... [Becattini: priv. comm] #### Marek's Horn - Change of behaviour of K^+/π^+ in A-A around 30 GeV - K^-/π^- has a smooth behaviour with energy Could this signal chiral transition? ### Brahms: K± vs y caution! K[±] sensitive to baryon density... #### • ... and λ_s [= $2 < s\overline{s} > /(\langle u\overline{u} \rangle + \langle d\overline{d} \rangle)$] max. around 30 GeV: [Braun-Munzinger et al.: NPA697(2002)902] • so one expects a broad maximum in K^+/π^+ about there... - but nothing so sharp! - → it looks like we have some anomaly... ## Absolute values of hyperon dN/dy see talk by D.Elia, Friday, P2 - absolute values of Λ and Ξ^+ dN/dy go up with \sqrt{s} ... - absolute values of A and Ξ⁻ dN/dy constant from √s_{NN} = 8.8 to 130 GeV! - Statistical fits: T and μ_B only sensitive to particle ratios - overall normalization of yields controlled by fitted V parameter - T, μ_B and V all vary with energy, but in such a way as to ensure Λ , Ξ^- yields stays constant ... - there must be a simple reason ... #### The mysterious **P** - ullet fundamental to understand γ_s vs C suppression - γ_s^2 , but no C suppression - the NA49 NA50 discrepancy is still with us... \rightarrow NA60 should provide high stats, low p_T $\Phi \rightarrow \mu\mu$ NA49: small deviation from PDG mass seen in all three Pb+Pb data sets, but not in pp see [NA49 (Friese): SQM 03] ## First & signal from NA60 - peripheral In-In - expected > 100k $\Phi \rightarrow \mu^{+}\mu^{-}$ - expected mass resolution:~ 20 MeV - also looking at $\Phi \rightarrow K^+K^-$ #### **Penix** • $\Phi \rightarrow K^+K^-$ (min bias 200 GeV) Mass and width agree within errors with PDG values • $\Phi \rightarrow e^+e^-$ (min bias 200 GeV) Preliminary yields: $$\phi \rightarrow e^+ e^- : \frac{dN}{dy} = 5.4 \pm 2.5 (stat)_{-2.8}^{+3.4} (sys)$$ $$\phi \rightarrow K^+K^-: \frac{dN}{dy} = 2.01 \pm 0.22 \,(stat)_{-0.52}^{+1.01} \,(sys)$$ # Extras... some results on spectra that I could not resist showing... #### Very low $p_T \pi$, K, p from Phobos! - tracks characterized by range and energy loss in Si layers - → particle id. - → momentum within 5% unique constraints for transport, hydro, thermal models ## Rcp for multistrange! - Φ seems to follow K^0_s more than Λ - → meson-baryon, not mass? ## v2 for multistrange! scaling seems to work (not for pions...) → parton recombination? 0.15 \vdash n=2 $\diamond \pi^+ + \pi^- PHENIX$ • Λ + $\overline{\Lambda}$ STAR △ K++K- PHENIX + Ξ + $\overline{\Xi}$ STAR $^{\blacktriangle}$ K_{S}^{0} STAR 0.1 0.05 **STAR Preliminary** Transverse Momentum p_⊤/n (GeV/c) scaled with n(quarks) # m_T scaling in pp... not absolute... ...but if one rescales: #### ... but not in Au-Au data #### data / power law #### Conclusions - Evidence for high degree of chemical equilibration - even for rare, multistrange particles - → QGP prediction! - → freeze-out curve traces expected phase boundary at SPS - RHIC - →hadronic transport does not seem to be able to do it (no time!) - RHIC opening up exciting new windows for strangeness! - elliptic flow, high p_T, high statistics reference data (pp, dAu) - Strangeness perhaps enhanced above hadronic equilibrium! - stand-alone smoking gun? - we must understand (non-)equilibrium - we need highest possible precision data on yields and ratios (RHIC!) - (we need theory to provide agreed statistical approach) - we need to understand the Φ - precision data from NA60 and Phenix - we must understand what's going on in the region √s_{NN} = 5 - 10 GeV - low E SPS? - SIS 200 @ GSI! #### Credits - Many thanks for discussions and material to: - Francesco Becattini - Rene Bellwied - Giuseppe Bruno - Helen Caines - Domenico Elia - Marek Gazdzicki - Adam Jacholkowski - Carlos Lourenço - Djamel Ouerdane - Emanuele Quercigh - Jan Rafelski - Karel Šafařík - Reinhard Stock - Julia Velkovska